Notes on Characteristic Classes

Nuno T. Leonardo

 $Mass a chusetts \ Institute \ of \ Technology$ ©2001 Nuno Leonardo. All rights reserved.

Abstract

Characteristic classes are introduced. The index theorem associated with the dirac operator is presented.

Contents

1	de Rham cohomology	2
2	Chern classes	2
3	Chern character	3
4	Chern-Simons form	3
5	Index theorem 5.1 The Atiya-Singer index theorem	5

Characteristic classes are subsets of the (usually, de Rham) cohomology classes of the base space, and measure the non-triviality or twisting of a fibre bundle.

1 de Rham cohomology

Let M be a m-dimensional manifold, and $\Omega^r(M)$ the space of r-forms in M. The sequence induced by the exterior derivative ¹

$$0 \to \Omega^0(M) \to \Omega^1(M) \to \ldots \to \Omega^{m-1}(M) \to \Omega^m(M) \to 0$$

is called the de Rham complex.

Since $d^2 \equiv d_{r+1}d_r = 0$, then $im\ d_r \subset ker\ d_{r+1}$. A **closed** r-form $\omega \in \Omega^r(M)$ is an element of $ker\ d_r$, i.e., dw = 0. An **exact** r-form is an element of $im\ d_{r-1}$, i.e., if there exists an (r-1)-form $\eta \in \Omega^{r-1}(M)$ such that $w = d\eta$. The rth $de\ Rham\ cohomology\ group\ H^r(M)$ is the quotient space of the of the set of closed r-forms, $ker\ d_r$, and of the set of exact r-forms, $im\ d_{r-1}$,

$$H^r(M) \equiv ker d_r / im d_{r-1}$$

I.e., two closed r-forms w_1, w_2 are identified in H^r if $w_1 - w_2 = d\eta$ for some $\eta \in \Omega^{r-1}(M)$.

2 Chern classes

Let (E, π, M, C^k, G) be a complex vector bundle, with gauge potential \mathcal{A} and field strength \mathcal{F} (naturally, with values in $\mathcal{L}(G)$).

The total Chern class is

$$c(\mathcal{F}) \equiv det \ (1 + \frac{i\mathcal{F}}{2\pi}) = 1 + c_1(\mathcal{F}) + c_2(\mathcal{F}) + \dots$$

where the individual (jth) Chern classes, $c_j(\mathcal{F}) \in \Omega^{2j}(M)$, are

$$c_{0}(\mathcal{F}) = 1$$

$$c_{1}(\mathcal{F}) = \frac{i}{2\pi} \operatorname{tr} \mathcal{F}$$

$$c_{2}(\mathcal{F}) = \frac{1}{2} \left(\frac{i}{2\pi}\right)^{2} \left[\operatorname{tr} \mathcal{F} \wedge \operatorname{tr} \mathcal{F} - \operatorname{tr} \mathcal{F} \wedge \mathcal{F}\right]$$

$$= \frac{1}{2} \left[(\operatorname{tr} \mathcal{A})^{2} - \operatorname{tr} (\mathcal{A})^{2}\right]$$

$$c_{3}(\mathcal{F}) = \frac{\pi}{6} \left(\frac{i}{2\pi}\right)^{3} \left[2\operatorname{tr} \mathcal{F} \wedge \mathcal{F} \wedge \mathcal{F} - 3(\operatorname{tr} \mathcal{F} \wedge \mathcal{F}) \wedge \operatorname{tr} \mathcal{F} + \operatorname{tr} \mathcal{F} \wedge \operatorname{tr} \mathcal{F} \wedge \operatorname{tr} \mathcal{F}\right]$$

$$\vdots$$

$$c_{k}(\mathcal{F}) = \det A = \left(\frac{i}{2\pi}\right)^{k} \det \mathcal{F}$$

Let us append a label to the exterior derivative, d_r , specifying the order r of the forms in which it acts; $i.e., d_r$ acts on elements of the space $\Omega^r(M)$

The series terminates at $c_k(\mathcal{F}) = \det \frac{i\mathcal{F}}{2\pi}$, and $c_{j>k} = 0$. $c_j(\mathcal{F})$ is closed, thus $[c_j(\mathcal{F})] \in H^{2j}(M)$.

The **Pontrjagin class** is defined equivalently for the case of real vector bundles.

3 Chern character

The total Chern character is

$$ch(\mathcal{F}) \equiv tr \ exp \ (\frac{i\mathcal{F}}{2\pi}) = \sum_{i=1}^{n} \frac{1}{j!} \ tr \ (\frac{i\mathcal{F}}{2\pi})^j$$

The jth Chern character $ch_j(\mathcal{F})$ is

$$ch_j(\mathcal{F}) \equiv \frac{1}{j!} tr \left(\frac{i\mathcal{F}}{2\pi}\right)^j$$

Each Chern character is expressed in terms of Chern classes as

$$ch_0(\mathcal{F}) = k$$

$$ch_1(\mathcal{F}) = c_1(\mathcal{F})$$

$$ch_2(\mathcal{F}) = \frac{1}{2} [c_1(\mathcal{F})^2 - 2c_2(\mathcal{F})]$$

$$\vdots$$

k is the fibre dimension of the bundle.

For the case of an SU(2) bundle over S^4 , the total Chern character is

$$ch(\mathcal{F}) = 2 + tr \left(\frac{i\mathcal{F}}{2\pi}\right) + \frac{1}{2} tr \left(\frac{i\mathcal{F}}{2\pi}\right)^2$$

The instanton number is given actually by

$$\int_{S^4} ch_2(\mathcal{F}) = \int_{S^4} \frac{1}{2} tr \left(\frac{i\mathcal{F}}{2\pi} \right)^2$$

4 Chern-Simons form

An arbitrary 2-form characteristic class $P_j(\mathcal{F})$ being closed, it can be written locally ² as an exact form by Poincaré's lemma,

$$P_i(\mathcal{F}) = dQ_{2i-1}(\mathcal{A}, \mathcal{F})$$

where $Q_{2j-1}(\mathcal{A}, \mathcal{F}) \in \mathcal{L}(G) \otimes \Omega^{2j-1}(M)$ is called the **Chern-Simons form** of $P_j(\mathcal{F})$.

²and not globall

If M is even-dimensional, $\,dim\,\,M\,=\,2l\,$ and $\partial M\neq 0,$ then Stoke's theorem implies

$$\int_{M} P_{l}(\mathcal{F}) = \int_{M} dQ_{m-1}(\mathcal{A}, \mathcal{F}) = \int_{\partial M} Q_{m-1}(\mathcal{A}, \mathcal{F})$$

 Q_{m-1} is itself a characteristic class, describing the topology of the boundary ∂M

Chern-Simons form of a Chern character

In particular, the Chern-Simons form of a Chern character is

$$Q_{2j-1}(\mathcal{A}, \mathcal{F}) = \frac{1}{(j-1)!} (\frac{i}{2\pi})^j \int_0^1 dt \ str(\mathcal{A}, \mathcal{F}_t^{j-1})$$

where $\mathcal{F}_t = td\mathcal{F} + t(t-1)\mathcal{A}^2$ and str is the symmetrized trace. Examples: ³

$$Q_1(\mathcal{A}, \mathcal{F}) = \frac{i}{2\pi} tr \mathcal{A}$$

$$Q_3(\mathcal{A},\mathcal{F}) = \frac{1}{2} (\frac{i}{2\pi})^2 tr[\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3]$$

$$Q_5(\mathcal{A}, \mathcal{F}) = \frac{1}{6} \left(\frac{i}{2\pi}\right)^3 tr \left[\mathcal{A}(d\mathcal{A})^2 + \frac{3}{2}\mathcal{A}^3 d\mathcal{A} + \frac{3}{5}\mathcal{A}^5\right]$$

:

For the SU(2) gauge theory, the expression for $Q_3(\mathcal{A}, \mathcal{F})$ can be used to find the component expression of

$$ch_2(\mathcal{F}) = d Q_3(\mathcal{A}, \mathcal{F})$$

namely,

$$tr \left[\epsilon^{\mu\nu\rho\sigma} \mathcal{F}_{\mu\nu} \mathcal{F}_{\rho\sigma} \right] = \partial_{\mu} \left[2\epsilon^{\mu\nu\rho\sigma} tr \left(\mathcal{A}_{\nu} \partial_{\rho} \mathcal{A}_{\sigma} + \frac{2}{3} \mathcal{A}_{\nu} \mathcal{A}_{\rho} \mathcal{A}_{\sigma} \right) \right]$$

Gauge transformation of Chern-Simons form

 $^{^3}Q_5(\mathcal{A},\mathcal{F})$ appears in the formulation of the Wee-Zummino-Witten term

Let A_t , \mathcal{F} $(t \in [0,1])$ be forms interpolating between the gauge field A and its gauge transformed $A^g = g^{-1}(A+d)g$,

$$\mathcal{A}_t = g^{-1}dg + tg^{-1}\mathcal{A}g, \qquad \mathcal{F}_t = d\mathcal{A}_t + \mathcal{A}_t^2$$

The transformation formula for $Q_{2j+1}(\mathcal{A}, \mathcal{F})$ is

$$Q_{2j+1}(\mathcal{A}^g, \mathcal{F}^g) = Q_{2j+1}(\mathcal{A}, \mathcal{F}) + Q_{2j+1}(g^{-1}dg, 0) + d\alpha_{2m}(\mathcal{A}, g^{-1}dg)$$

where

$$\alpha_{2m}(\mathcal{A}, g^{-1}dg) = \int_0^1 dt \ l_t Q_{2j+1}(\mathcal{A}_t, \mathcal{F}_t)$$

 l_t being a differential operator that acts on \mathcal{A}_t , \mathcal{F}_t as $l_t\mathcal{A}_t = 0$, $l_t\mathcal{F}_t = dt(\mathcal{A}_1 - \mathcal{A}_0)$.

5 Index theorem

Index theorems state relationships between the *analytic* properties of differential operators on fibre bundles and the *topological* properties of the fibre bundles themselves.

The index of an operator, determined by the zero-frequency solutions, is expressed in terms of the characteristic classes of the fibre bundles involved.

Differential operators — such as the Laplacian, the d'Alembertian, the Dirac operator — are regarded as maps of sections

$$D:\Gamma(M,E)\to\Gamma(M,F)$$

where $\Gamma(M,F)$, $\Gamma(M,E)$ denote the set of sections on the base manifold M of vector bundles F,E.

The Dirac operator, in particular, is a map $\Gamma(M,E) \to \Gamma(M,E)$, E being a spin bundle over M.

If inner products are defined on the fibre manifolds E, F, it is then possible to define the adjoint of D,

$$D^{\dagger}: \Gamma(M, F) \to \Gamma(M, E)$$

The index of D is

$$ind D \equiv dim ker D - dim ker D^{\dagger}$$

where $ker\ D$, $ker\ D^{\dagger}$ are the sets of zero-eigenvectors of $D,\ D^{\dagger}$

$$\begin{array}{cccc} ker \ D & \equiv & \{ \ s \in \Gamma(M,E) \mid D \ s \ = \ 0 \ \} \\ ker \ D^{\dagger} & \equiv & \{ \ s \in \Gamma(M,F) \mid D^{\dagger} \ s \ = \ 0 \ \} \end{array}$$

This analytical quantity is a topological invariant expressed in terms of the integral of an appropriate characteristic class over M.

5.1 The Atiya-Singer index theorem

Let M be a 2n-dimensional Euclidean spacetime manifold, and D the Dirac operator with a gauge field $\mathcal A$

$$D[\mathcal{A}] \equiv \gamma^{\mu} (\partial_{\mu} + \mathcal{A}_{\mu})$$

where γ^{μ} are the Euclidean Dirac gamma matrices.

Define the right-chirality Dirac operator $iD_R \equiv iDP_R$, where P_R is given in terms of γ_5 which is taken to be the product of the 2n Dirac gamma matrices.

The index of iD_R is

$$ind(iD_R)[\mathcal{A}] = dim \ ker \ (iD_R[\mathcal{A}]) - dim \ ker \ (iD_R[\mathcal{A}])^{\dagger} \equiv n_+ - n_-$$

with n_{\pm} the number of eigenstates ϕ_0 of $iD[\mathcal{A}]$ with zero eigenvalue and chirality \pm , i.e., $\gamma_5\phi_0=\pm\phi_0$.

The Atiya-Singer index theorem states that ⁴

$$ind(iD_R)[\mathcal{A}] = \int_M [ch(\mathcal{F})]_{vol} = \frac{1}{n!} (\frac{i}{2\pi})^n \int_M tr \mathcal{F}^n$$

 $^{^4{\}rm the~subscript}~_{vol}$ indicates that only the term proportional to the volume form of M contributes